$$\frac{\text{Direct Products and Sums}}{Q_{j}: Is it possible decompose a group into simple groups?}$$

$$\frac{\text{Example}}{R^{2} = R \times R} \quad (R^{2}, +) \text{ is constructed using two copies of } (R, +).$$

$$\frac{\text{Composition in } R^{2} \quad \text{composition } R^{2} \quad$$

• $G \times H$ comos with natural homomorphisms $G \times H$ $Ker(\phi_{\pm}) = \{(e_{q}, h) \mid h \in H\} \cong H$ $Ker(\phi_{\pm}) = \{(g, e_{h}) \mid g \in G\} \cong G$ $G \times H$ Example G = H = (R, +) $Ker (g, h) = R^{2} = G \times H$ $Ker (g, h) = R \oplus R \oplus R$

• All this can be generalized to any collection of props.
To the finite can,
Grand props
$$\Rightarrow$$
 Grand Can a prop.
Grand Grand \Rightarrow Grand \Rightarrow Grand \Rightarrow Grand \Rightarrow
Again $Grip \equiv \{(e_{Grinn}, e_{Grinn}, grip), gripping d$
Again $Grip \equiv \{(e_{Grinn}, e_{Grinn}, gripping, gripping), gripping d$
 $from errow d$ $Gripping for $Gripping d$
 $Gr$$

Proposition If Z is true, then y is equivalent to the
following:
If Given
$$g \in G$$
, $\exists h_i \in H_i$, $\forall i \in \{1, \dots, n\}$
 $g = h_i + h_2 + h_3 + \dots + h_n$ Similar to spanning
 and Similar to
 $h_i + h_2 + \dots + h_n = C$ $\Rightarrow h_i = h_n = \dots = h_n = c$
Proof
Assume $2/$ and f are true. Let $h_i \in H_i$ and $h_i + \dots + h_n = c$
 $f = h_i + h_2 + \dots + h_n$
 $h_i = h_2 = \dots = h_n = c$ $\Rightarrow f_i = h_2 = \dots = h_n = c$
 $f = h_i + h_2 + \dots + h_n$
Assume $2 = and f' = are true. Let $g_i, h_i \in H_i$ such that
 $g_i + g_i + \dots + g_n = h_i + h_2 + \dots + h_n$
 $\Rightarrow (g_i + g_i + \dots + g_n)^{-1} (h_i + \dots + h_n) = c$
 $\Rightarrow (f_i^{-1} + h_i) + (g_i^{-1} + h_i) + \dots + (g_i^{-1} + h_n) = c$ and $g_i^{-1} + h_i = H_i$
 $\Rightarrow f_i + h_2 = 0$ $g_i = h_i$
 $f = h_i + h_2 + \dots + h_n$ $=$
 $f = h_i \oplus \dots \oplus h_n \Rightarrow G = H_i \times H_2 \times \dots \times H_n$
 $Proof$
Deferm $g : H_i \times H_2 \times \dots \times H_n \to G$$

 $(h_1, h_2, \dots, h_n) \longmapsto h_1 * h_2 * h_3 \dots * h_n$ $\stackrel{2}{=} = \phi \ a \ homomorphism$ $\frac{1}{2} = \phi \ a \ bijection$